Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
ERJ Open Res ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38226065

ABSTRACT

Background: In adults with severe asthma (SA) bronchial wall thickening, bronchiectasis and low attenuation regions (LAR) have been described on chest computed tomography (CT) scans. The extent to which these structural abnormalities are present in children with SA is largely unknown. Our aim was to study the presence and extent of airway abnormalities on chest CT of children with SA. Methods: 161 inspiratory and expiratory CT scans, either spirometer-controlled or technician-controlled, obtained in 131 children with SA (mean±SD age 11.0±3.8 years) were collected retrospectively. Inspiratory scans were analysed manually using a semi-quantitative score and automatically using LungQ (v2.1.0.1; Thirona B.V., Nijmegen, the Netherlands). LungQ segments the bronchial tree, identifies the generation for each bronchus-artery (BA) pair and measures the following BA dimensions: outer bronchial wall diameter (Bout), adjacent artery diameter (A) and bronchial wall thickness (Bwt). Bronchiectasis was defined as Bout/A ≥1.1, bronchial wall thickening as Bwt/A ≥0.14. LAR, reflecting small airways disease (SAD), was measured automatically on inspiratory and expiratory scans and manually on expiratory scans. Functional SAD was defined as FEF25-75 and/or FEF75 z-scores <-1.645. Results are shown as median and interquartile range. Results: Bronchiectasis was present on 95.8% and bronchial wall thickening on all CTs using the automated method. Bronchiectasis was present on 28% and bronchial wall thickening on 88.8% of the CTs using the manual semi-quantitative analysis. The percentage of BA pairs defined as bronchiectasis was 24.62% (12.7-39.3%) and bronchial wall thickening was 41.7% (24.0-79.8%) per CT using the automated method. LAR was observed on all CTs using the automatic analysis and on 82.9% using the manual semi-quantitative analysis. Patients with LAR or functional SAD had more thickened bronchi than patients without. Conclusion: Despite a large discrepancy between the automated and the manual semi-quantitative analysis, bronchiectasis and bronchial wall thickening are present on most CT scans of children with SA. SAD is related to bronchial wall thickening.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37833986

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. The combination of the CFTR modulators elexacaftor, tezacaftor, and ivacaftor (ETI) enables the effective rescue of CFTR function in people with the most prevalent F508del mutation. However, the functional restoration of rare CFTR variants remains unclear. Here, we use patient-derived intestinal organoids (PDIOs) to identify rare CFTR variants and potentially individuals with CF that might benefit from ETI. First, steady-state lumen area (SLA) measurements were taken to assess CFTR function and compare it to the level observed in healthy controls. Secondly, the forskolin-induced swelling (FIS) assay was performed to measure CFTR rescue within a lower function range, and to further compare it to ETI-mediated CFTR rescue in CFTR genotypes that have received market approval. ETI responses in 30 PDIOs harboring the F508del mutation served as reference for ETI responses of 22 PDIOs with genotypes that are not currently eligible for CFTR modulator treatment, following European Medicine Agency (EMA) and/or U.S. Food and Drug Administration (FDA) regulations. Our data expand previous datasets showing a correlation between in vitro CFTR rescue in organoids and corresponding in vivo ppFEV1 improvement upon a CFTR modulator treatment in published clinical trials, and suggests that the majority of individuals with rare CFTR variants could benefit from ETI. CFTR restoration was further confirmed on protein levels using Western blot. Our data support that CFTR function measurements in PDIOs with rare CFTR genotypes can help to select potential responders to ETI, and suggest that regulatory authorities need to consider providing access to treatment based on the principle of equality for people with CF who do not have access to treatment.


Subject(s)
Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Benzodioxoles/pharmacology , Benzodioxoles/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Mutation
3.
Front Immunol ; 14: 1202009, 2023.
Article in English | MEDLINE | ID: mdl-37457715

ABSTRACT

Background: Cystic fibrosis (CF) airway disease is characterized by chronic inflammation, featuring neutrophil influx to the lumen. Airway macrophages (AMs) can promote both inflammation and resolution, and are thus critical to maintaining and restoring homeostasis. CF AM functions, specifically scavenging activity and resolution of inflammation, have been shown to be impaired, yet underlying processes remain unknown. We hypothesized that impaired CF AM function results from an altered expression of receptors that mediate or regulate scavenging, and set out to investigate changes in expression of these markers during the early stages of CF lung disease. Methods: Bronchoalveolar lavage fluid (BALF) was collected from 50 children with CF aged 1, 3 or 5 years. BALF cells were analyzed using flow cytometry. Expression levels of surface markers on AMs were expressed as median fluorescence intensities (MFI) or percentage of AMs positive for these markers. The effect of age and neutrophilic inflammation, among other variables, on marker expression was assessed with a multivariate linear regression model. Results: AM expression of scavenger receptor CD163 decreased with age (p = 0.016) and was negatively correlated with BALF %neutrophils (r = -0.34, p = 0.016). AM expression of immune checkpoint molecule SIRPα also decreased with age (p = 0.0006), but did not correlate with BALF %neutrophils. Percentage of AMs expressing lipid scavenger CD36 was low overall (mean 20.1% ± 16.5) and did not correlate with other factors. Conversely, expression of immune checkpoint PD-1 was observed on the majority of AMs (mean PD-1pos 72.9% ± 11.8), but it, too, was not affected by age or BALF %neutrophils. Compared to matched blood monocytes, AMs had a higher expression of CD16, CD91, and PD-1, and a lower expression of CD163, SIRPα and CD36. Conclusion: In BALF of preschool children with CF, higher age and/or increased neutrophilic inflammation coincided with decreased expression of scavenger receptors on AMs. Expression of scavenging receptors and regulators showed a distinctly different pattern in AMs compared to blood monocytes. These findings suggest AM capacity to counter inflammation and promote homeostasis reduces during initiation of CF airway disease and highlight new avenues of investigation into impaired CF AM function.


Subject(s)
Cystic Fibrosis , Child, Preschool , Humans , Programmed Cell Death 1 Receptor , Inflammation , Neutrophils/metabolism , Macrophages/metabolism
4.
J Aerosol Med Pulm Drug Deliv ; 36(3): 101-111, 2023 06.
Article in English | MEDLINE | ID: mdl-37172274

ABSTRACT

Background: Aerosol therapies with vented facemasks are considered a risk for nosocomial transmission of viruses such as severe acute respiratory syndrome coronavirus 2. The transmission risk can be decreased by minimizing aerosol leakage and filtering the exhaled air. Objective: In this study, we determined which closed facemask designs show the least leakage. Methods: Smoke leakage was quantified during in- and exhalation in a closed system with expiration filter for three infant, six child, and six adult facemasks (three times each mask), using age-appropriate anatomical face models and breathing patterns. To assess leakage, smoke release was recorded and cumulative average pixel intensity (cAPI) was calculated. Results: In the adult group, aircushion edges resulted in less leakage than soft edges (cAPI: 407 ± 250 vs. 774 ± 152) (p = 0.004). The Intersurgical® Economy 5 mask (cAPI: 146 ± 87) also released less smoke than the Intersurgical® Clearlite 5 (cAPI: 748 ± 68) mask with the same size, but different geometry and edge type (p-value <0.05). Moreover, mask size had an effect, as there was a difference between Intersurgical® Economy 4 (cAPI: 708 ± 346) and 5, which have the same geometry but a different size (p-value <0.05). Finally, repositioning masks increased the standard deviations. Mask leakage was not dependent on breathing patterns within the child group. Conclusions: Mask leakage can be minimized by using a closed system with a well-fitting mask that is appropriately positioned. To decrease leakage, and therewith minimize potential viral transmission, selecting a well-fitting mask with an aircushion edge is to be recommended.


Subject(s)
COVID-19 , Adult , Child , Infant , Humans , Masks , Administration, Inhalation , Pandemics , Respiratory Aerosols and Droplets , Smoke
5.
Microbiol Spectr ; 11(3): e0405722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199622

ABSTRACT

16S-based sequencing provides broader information on the respiratory microbial community than conventional culturing. However, it (often) lacks species- and strain-level information. To overcome this issue, we used 16S rRNA-based sequencing results from 246 nasopharyngeal samples obtained from 20 infants with cystic fibrosis (CF) and 43 healthy infants, which were all 0 to 6 months old, and compared them to both standard (blind) diagnostic culturing and a 16S-sequencing-informed "targeted" reculturing approach. Using routine culturing, we almost uniquely detected Moraxella catarrhalis, Staphylococcus aureus, and Haemophilus influenzae (42%, 38%, and 33% of samples, respectively). Using the targeted reculturing approach, we were able to reculture 47% of the top-5 operational taxonomical units (OTUs) in the sequencing profiles. In total, we identified 60 species from 30 genera with a median of 3 species per sample (range, 1 to 8). We also identified up to 10 species per identified genus. The success of reculturing the top-5 genera present from the sequencing profile depended on the genus. In the case of Corynebacterium being in the top 5, we recultured them in 79% of samples, whereas for Staphylococcus, this value was only 25%. The success of reculturing was also correlated with the relative abundance of those genera in the corresponding sequencing profile. In conclusion, revisiting samples using 16S-based sequencing profiles to guide a targeted culturing approach led to the detection of more potential pathogens per sample than conventional culturing and may therefore be useful in the identification and, consequently, treatment of bacteria considered relevant for the deterioration or exacerbation of disease in patients like those with CF. IMPORTANCE Early and effective treatment of pulmonary infections in cystic fibrosis is vital to prevent chronic lung damage. Although microbial diagnostics and treatment decisions are still based on conventional culture methods, research is gradually focusing more on microbiome and metagenomic-based approaches. This study compared the results of both methods and proposed a way to combine the best of both worlds. Many species can relatively easily be recultured based on the 16S-based sequencing profile, and it provides more in-depth information about the microbial composition of a sample than that obtained through routine (blind) diagnostic culturing. Still, well-known pathogens can be missed by both routine diagnostic culture methods as well as by targeted reculture methods, sometimes even when they are highly abundant, which may be a consequence of either sample storage conditions or antibiotic treatment at the time of sampling.


Subject(s)
Cystic Fibrosis , Microbiota , Infant , Humans , Child , Infant, Newborn , Cystic Fibrosis/diagnosis , Cystic Fibrosis/microbiology , RNA, Ribosomal, 16S/genetics , Respiratory System/microbiology , Bacteria/genetics , Microbiota/genetics
6.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Article in English | MEDLINE | ID: mdl-35732550

ABSTRACT

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Subject(s)
Cystic Fibrosis , Child , Humans , Programmed Cell Death 1 Receptor , Lung , Inflammation , Bacteria/metabolism , Biomarkers/metabolism , Macrophages
7.
J Cyst Fibros ; 21(1): e28-e34, 2022 01.
Article in English | MEDLINE | ID: mdl-34016557

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa (PA) is an important respiratory pathogen for cystic fibrosis (CF) patients. Routine microbiology surveillance is time-consuming, and is best performed on expectorated sputum. As alternative, volatile organic compounds (VOCs) may be indicative of PA colonisation. In this study, we aimed to identify VOCs associated with PA in literature and perform targeted exhaled breath analysis to recognize PA positive CF patients non-invasively. METHODS: This study consisted of 1) a literature review to select VOCs of interest, and 2) a cross-sectional CF study. Definitions used: A) PA positive, PA culture at visit/chronically; B) PA free, no PA culture in ≥12 months. Exhaled VOCs were identified via quadrupole MS. The primary endpoint was the area under the receiver operating characteristics curve (AUROCC) of individual VOCs as well as combined VOCs against PA culture. RESULTS: 241 VOCs were identified in literature, of which 56 were further evaluated, and 13 could be detected in exhaled breath in our cohort. Exhaled breath of 25 pediatric and 28 adult CF patients, PA positive (n=16) and free (n=28) was available. 3/13 VOCs were significantly (p<0.05) different between PA groups in children; none were in adults. Notably, a composite model based on 5 or 1 VOC(s) showed an AUROCC of 0.86 (CI 0.71-1.0) and 0.87 (CI 0.72-1.0) for adults and children, respectively. CONCLUSIONS: Targeted VOC analysis appears to discriminate children and adults with and without PA positive cultures with clinically acceptable sensitivity values.


Subject(s)
Breath Tests/methods , Cystic Fibrosis/microbiology , Pseudomonas Infections/diagnosis , Volatile Organic Compounds/analysis , Adolescent , Adult , Cross-Sectional Studies , Exhalation , Female , Humans , Longitudinal Studies , Male , Pseudomonas aeruginosa , Young Adult
8.
Eur Respir J ; 59(6)2022 06.
Article in English | MEDLINE | ID: mdl-34887326

ABSTRACT

BACKGROUND: Digital biomarkers are a promising novel method to capture clinical data in a home setting. However, clinical validation prior to implementation is of vital importance. The aim of this study was to clinically validate physical activity, heart rate, sleep and forced expiratory volume in 1 s (FEV1) as digital biomarkers measured by a smartwatch and portable spirometer in children with asthma and cystic fibrosis (CF). METHODS: This was a prospective cohort study including 60 children with asthma and 30 children with CF (aged 6-16 years). Participants wore a smartwatch, performed daily spirometry at home and completed a daily symptom questionnaire for 28 days. Physical activity, heart rate, sleep and FEV1 were considered candidate digital end-points. Data from 128 healthy children were used for comparison. Reported outcomes were compliance, difference between patients and controls, correlation with disease activity, and potential to detect clinical events. Analysis was performed with linear mixed effects models. RESULTS: Median compliance was 88%. On average, patients exhibited lower physical activity and FEV1 compared with healthy children, whereas the heart rate of children with asthma was higher compared with healthy children. Days with a higher symptom score were associated with lower physical activity for children with uncontrolled asthma and CF. Furthermore, FEV1 was lower and (nocturnal) heart rate was higher for both patient groups on days with more symptoms. Candidate biomarkers appeared able to describe a pulmonary exacerbation. CONCLUSIONS: Portable spirometer- and smartwatch-derived digital biomarkers show promise as candidate end-points for use in clinical trials or clinical care in paediatric lung disease.


Subject(s)
Asthma , Cystic Fibrosis , Biomarkers , Child , Forced Expiratory Volume , Humans , Prospective Studies , Spirometry
9.
J Cyst Fibros ; 21(3): 537-543, 2022 05.
Article in English | MEDLINE | ID: mdl-34922851

ABSTRACT

BACKGROUND: In cystic fibrosis (CF), loss of CF transmembrane conductance regulator (CFTR)-dependent bicarbonate secretion precipitates the accumulation of viscous mucus in the lumen of respiratory and gastrointestinal epithelial tissues. We investigated whether the combination of elexacaftor (ELX), ivacaftor (IVA) and tezacaftor (TEZ), apart from its well-documented effect on chloride transport, also restores Phe508del-CFTR-mediated bicarbonate transport. METHODS: Epithelial monolayers were cultured from intestinal and biliary (cholangiocyte) organoids of homozygous Phe508del-CFTR patients and controls. Transcriptome sequencing was performed, and bicarbonate and chloride transport were assessed in the presence or absence of ELX/IVA/TEZ, using the intestinal current measurement technique. RESULTS: ELX/IVA/TEZ markedly enhanced bicarbonate and chloride transport across intestinal epithelium. In biliary epithelium, it failed to enhance CFTR-mediated bicarbonate transport but effectively rescued CFTR-mediated chloride transport, known to be requisite for bicarbonate secretion through the chloride-bicarbonate exchanger AE2 (SLC4A2), which was highly expressed by cholangiocytes. Biliary but not intestinal epithelial cells expressed an alternative anion channel, anoctamin-1/TMEM16A (ANO1), and secreted bicarbonate and chloride upon purinergic receptor stimulation. CONCLUSIONS: ELX/IVA/TEZ has the potential to restore both chloride and bicarbonate secretion across CF intestinal and biliary epithelia and may counter luminal hyper-acidification in these tissues.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Aminophenols/pharmacology , Benzodioxoles , Bicarbonates , Chloride Channel Agonists/pharmacology , Chloride-Bicarbonate Antiporters/genetics , Chlorides , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Epithelial Cells , Humans , Indoles , Organoids , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
10.
J Asthma ; 59(11): 2223-2233, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34699298

ABSTRACT

OBJECTIVE: Conventional inhaler devices have a low efficacy in targeting small airways. Smart nebulizers can be used to increase deposition to small airways by adjusting the flow and depth of each inhalation based on patients 'individual inspiratory capacity. We investigated whether targeting of high dose inhaled corticosteroids (ICS) to small airways with a smart nebulizer could reduce exacerbation rate in children with severe asthma (SA). METHODS: We conducted a retrospective study in children with SA using a smart nebulizer (Akita® Jet nebulizer) for the administration of high dose ICS in our outpatient clinic at the Erasmus MC - Sophia Children's Hospital. Clinical data before and after start of treatment were collected. The primary outcome was exacerbation rate, defined as: number of asthma exacerbations for which oral corticosteroid courses (OCS) were prescribed. The exacerbation rate 1 year before treatment was compared with the exacerbation rate 1 year after start of treatment. Secondary outcomes were changes in spirometry parameters, hospital admissions and medication use. RESULTS: Data on OCS use was available for 28/31 patients. Median number of asthma exacerbations requiring OCS courses 1 year before decreased from 2 (interquartile range(IQR) 2) to 0.5 (IQR 3) 1 year after treatment (p = 0.021). Hospital admission decreased from 1 (IQR 3) to 0 (IQR 1)(p = 0.028). FEV1, FEF25-75 and FEF75 were not significantly improved after one year of treatment with the smart nebulizer (p = 0.191; p = 0.248; p = 0.572). CONCLUSION: Targeting small airways with high dose ICS using a smart nebulizer resulted in a significant reduction in exacerbations requiring OCS after one year of treatment.


Subject(s)
Anti-Asthmatic Agents , Asthma , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Child , Humans , Nebulizers and Vaporizers , Retrospective Studies , Technology
11.
Front Pediatr ; 10: 1084313, 2022.
Article in English | MEDLINE | ID: mdl-36814432

ABSTRACT

Respiratory tract exacerbations play a crucial role in progressive lung damage of people with cystic fibrosis, representing a major determinant in the loss of functional lung tissue, quality of life and patient survival. Detection and monitoring of respiratory tract exacerbations are challenging for clinicians, since under- and over-treatment convey several risks for the patient. Although various diagnostic and monitoring tools are available, their implementation is hampered by the current definition of respiratory tract exacerbation, which lacks objective "cut-offs" for clinical and lung function parameters. In particular, the latter shows a large variability, making the current 10% change in spirometry outcomes an unreliable threshold to detect exacerbation. Moreover, spirometry cannot be reliably performed in preschool children and new emerging tools, such as the forced oscillation technique, are still complementary and need more validation. Therefore, lung imaging is a key in providing respiratory tract exacerbation-related structural and functional information. However, imaging encompasses several diagnostic options, each with different advantages and limitations; for instance, conventional chest radiography, the most used radiological technique, may lack sensitivity and specificity in respiratory tract exacerbations diagnosis. Other methods, including computed tomography, positron emission tomography and magnetic resonance imaging, are limited by either radiation safety issues or the need for anesthesia in uncooperative patients. Finally, lung ultrasound has been proposed as a safe bedside option but it is highly operator-dependent and there is no strong evidence of its possible use during respiratory tract exacerbation. This review summarizes the clinical challenges of respiratory tract exacerbations in patients with cystic fibrosis with a special focus on imaging. Firstly, the definition of respiratory tract exacerbation is examined, while diagnostic and monitoring tools are briefly described to set the scene. This is followed by advantages and disadvantages of each imaging technique, concluding with a diagnostic imaging algorithm for disease monitoring during respiratory tract exacerbation in the cystic fibrosis patient.

12.
Trials ; 22(1): 578, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454570

ABSTRACT

The SARS-CoV-2 pandemic has disrupted clinical trials worldwide. The European Cystic Fibrosis Society-Clinical Trials Network (ECFS-CTN) has tracked clinical trial disruption by surveying its 58 trial sites across 17 European countries and collated information on measures to mitigate the impact of the pandemic and ensure trial continuity. Here, we present recommendations on how to reduce the risk of SARS-CoV-2 exposure to patients and trial staff by implementing remote trial visits where possible, using home assessments, video and phone calls, electronic consent, and home delivery of study drugs. We discuss the practicalities of remote source data verification, protocol amendments, changing trial site location, and staff absences and home working. We outline recommendations on how to protect trial outcomes, including home assessments, safety reporting, protocol deviations, and recruitment challenges. Finally, we discuss the importance of continued access to study drugs via extension trials for some patients. This guidance was co-created from the shared knowledge and experience of sites in our network and was re-distributed directly to all ECFS-CTN sites to help mitigate the impact of further waves of the SARS-CoV-2 pandemic. We will also use this guidance to assist companies, academia, and consortia with future protocol design and risk mitigation plans. This guidance can be applied to clinical trials in other diseases and could help sites that are not supported by clinical trial networks.


Subject(s)
COVID-19 , Cystic Fibrosis , Cystic Fibrosis/diagnosis , Cystic Fibrosis/epidemiology , Europe , Humans , Pandemics , SARS-CoV-2
13.
Pathogens ; 10(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34451409

ABSTRACT

Bacterial respiratory tract infections (RTIs) are a major global health burden, and the role of antigen-presenting cells (APCs) in mounting an immune response to contain and clear invading pathogens is well-described. However, most encounters between a host and a bacterial pathogen do not result in symptomatic infection, but in asymptomatic carriage instead. The fact that a pathogen will cause infection in one individual, but not in another does not appear to be directly related to bacterial density, but rather depend on qualitative differences in the host response. Understanding the interactions between respiratory pathogens and airway APCs that result in asymptomatic carriage, will provide better insight into the factors that can skew this interaction towards infection. This review will discuss the currently available knowledge on airway APCs in the context of asymptomatic bacterial carriage along the entire respiratory tract. Furthermore, in order to interpret past and futures studies into this topic, we propose a standardized nomenclature of the different stages of carriage and infection, based on the pathogen's position with regard to the epithelium and the amount of inflammation present.

14.
Nutrients ; 13(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073260

ABSTRACT

Cystic Fibrosis (CF) is a life-long genetic disease, causing increased energy needs and a healthy diet with a specific nutrient distribution. Nutritional status is an indicator of disease prognosis and survival. This study aimed at assessing the effectiveness of a self-management mobile app in supporting patients with CF to achieve the dietary goals set by the CF nutrition guidelines. A clinical trial was conducted in pancreatic insufficient children with CF, followed in six European CF centres, where the self-management app developed within the MyCyFAPP project was used for six months. To assess secondary outcomes, three-day food records were compiled in the app at baseline and after 3 and 6 months of use. Eighty-four subjects (mean 7.8 years old) were enrolled. Compared to baseline, macronutrient distribution better approximated the guidelines, with protein and lipid increasing by 1.0 and 2.1% of the total energy intake, respectively, by the end of the study. Consequently, carbohydrate intake of the total energy intake decreased significantly (-2.9%), along with simple carbohydrate intake (-2.4%). Regarding food groups, a decrease in ultra-processed foods was documented, with a concomitant increase in meat and dairy. The use of a self-management mobile app to self-monitor dietary intake could become a useful tool to achieve adherence to guideline recommendations, if validated during a longer period of time or against a control group.


Subject(s)
Cystic Fibrosis , Eating , Nutrients , Self-Management , Telemedicine/methods , Child , Child, Preschool , Diet , Feeding Behavior , Female , Humans , Male , Mobile Applications , Nutrition Policy , Nutritional Status
15.
Clin Exp Allergy ; 51(9): 1157-1171, 2021 09.
Article in English | MEDLINE | ID: mdl-34128573

ABSTRACT

BACKGROUND: The polymorphism Arg16 in ß2 -adrenergic receptor (ADRB2) gene has been associated with an increased risk of exacerbations in asthmatic children treated with long-acting ß2 -agonists (LABA). However, it remains unclear whether this increased risk is mainly attributed to this single variant or the combined effect of the haplotypes of polymorphisms at codons 16 and 27. OBJECTIVE: We assessed whether the haplotype analysis could explain the association between the polymorphisms at codons 16 (Arg16Gly) and 27 (Gln27Glu) in ADRB2 and risk of asthma exacerbations in patients treated with inhaled corticosteroids (ICS) plus LABA. METHODS: The study was undertaken using data from 10 independent studies (n = 5903) participating in the multi-ethnic Pharmacogenomics in Childhood Asthma (PiCA) consortium. Asthma exacerbations were defined as asthma-related use of oral corticosteroids or hospitalizations/emergency department visits in the past 6 or 12 months prior to the study visit/enrolment. The association between the haplotypes and the risk of asthma exacerbations was performed per study using haplo.stats package adjusted for age and sex. Results were meta-analysed using the inverse variance weighting method assuming random-effects. RESULTS: In subjects treated with ICS and LABA (n = 832, age: 3-21 years), Arg16/Gln27 versus Gly16/Glu27 (OR: 1.40, 95% CI: 1.05-1.87, I2  = 0.0%) and Arg16/Gln27 versus Gly16/Gln27 (OR: 1.43, 95% CI: 1.05-1.94, I2  = 0.0%), but not Gly16/Gln27 versus Gly16/Glu27 (OR: 0.99, 95% CI: 0.71-1.39, I2  = 0.0%), were significantly associated with an increased risk of asthma exacerbations. The sensitivity analyses indicated no significant association between the ADRB2 haplotypes and asthma exacerbations in the other treatment categories, namely as-required short-acting ß2 -agonists (n = 973), ICS monotherapy (n = 2623), ICS plus leukotriene receptor antagonists (LTRA; n = 338), or ICS plus LABA plus LTRA (n = 686). CONCLUSION AND CLINICAL RELEVANCE: The ADRB2 Arg16 haplotype, presumably mainly driven by the Arg16, increased the risk of asthma exacerbations in patients treated with ICS plus LABA. This finding could be beneficial in ADRB2 genotype-guided treatment which might improve clinical outcomes in asthmatic patients.


Subject(s)
Asthma/genetics , Asthma/physiopathology , Receptors, Adrenergic, beta-2/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genotype , Humans , Male , Polymorphism, Genetic/genetics , Young Adult
16.
J Pers Med ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925519

ABSTRACT

Ivacaftor has been shown to restore the functionality of the S1251N (also known as c.3752G>A) mutated CFTR, which may cause alterations in both airway and gut physiology and micro-environment, resulting in a change of microbiota in these organs. The aim of the present study was to analyze the effects of ivacaftor on the microbial community composition of both airway and gut in subjects with CF carrying one S1251N mutation, using a 16S rRNA gene-based sequencing approach. In 16 subjects with CF, repetitive samples from airways and gut were collected just before, and 2 months after, and, for 8 patients, also 9 and 12 months after, start of ivacaftor. 16S rRNA based sequencing identified 344 operational taxonomical units (OTUs) in a total of 139 samples (35 nasopharyngeal, 39 oropharyngeal, 29 sputum, and 36 fecal samples). Ivacaftor significantly enhanced bacterial diversity and overall microbiota composition in the gut (p < 0.01). There were no significant changes in the overall microbial composition and alpha diversity in upper and lower airways of these patients after ivacaftor treatment. Treatment with ivacaftor induces changes in gut microbiota whereas airway microbiota do not change significantly over time.

17.
J Cyst Fibros ; 19(6): 955-961, 2020 11.
Article in English | MEDLINE | ID: mdl-32499204

ABSTRACT

BACKGROUND: The natural food supplements curcumin and genistein, and the drug ivacaftor were found effective as CFTR potentiators in the organoids of individuals carrying a S1251N gating mutation, possibly in a synergistic fashion. Based on these in vitro findings, we evaluated the clinical efficacy of a treatment with curcumin, genistein and ivacaftor, in different combinations. METHODS: In three multi-center trials people with CF carrying the S1251N mutation were treated for 8 weeks with curcumin+genistein, ivacaftor and ivacaftor+genistein. We evaluated change in lung function, sweat chloride concentration, CFQ-r, BMI and fecal elastase to determine the clinical effect. We evaluated the pharmacokinetic properties of the compounds by evaluating the concentration in plasma collected after treatment and the effect of the same plasma on the intestinal organoids. RESULTS: A clear clinical effect of treatment with ivacaftor was observed, evidenced by a significant improvement in clinical parameters. In contrast we observed no clear clinical effect of curcumin and/or genistein, except for a small but significant reduction in sweat chloride and airway resistance. Plasma concentrations of the food supplements were low, as was the response of the organoids to this plasma. CONCLUSIONS: We observed a clear clinical effect of treatment with ivacaftor, which is in line with the high responsiveness of the intestinal organoids to this drug. No clear clinical effect was observed of the treatment with curcumin and/or genistein, the low plasma concentration of these compounds emphasizes that pharmacokinetic properties of a compound have to be considered when in vitro experiments are performed.


Subject(s)
Aminophenols/pharmacokinetics , Chloride Channel Agonists/pharmacokinetics , Curcumin/pharmacokinetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Genistein/pharmacokinetics , Quinolones/pharmacokinetics , Adolescent , Adult , Child , Cystic Fibrosis/genetics , Female , Humans , Male , Organoids/drug effects
18.
J Cyst Fibros ; 19(4): 553-561, 2020 07.
Article in English | MEDLINE | ID: mdl-32487494

ABSTRACT

OBJECTIVES: Patients with Cystic Fibrosis (CF) suffer from pancreatic insufficiency, lipid malabsorption and gastrointestinal complaints, next to progressive pulmonary disease. Altered mucosal homoeostasis due to malfunctioning chloride channels results in an adapted microbial composition of the gastrointestinal and the respiratory tract. Additionally, antibiotic treatment has the potential to distort resident microbial communities dramatically. This study aims to investigate early life development of the gut microbial community composition of children with CF compared to healthy infants and to study the independent effects of antibiotics taking into account other clinical and lifestyle factors. STUDY DESIGN: Faecal samples from 20 infants with CF and 45 healthy infants were collected regularly during the first 18 months of life and microbial composition was determined using 16S rRNA based sequencing. RESULTS: We observed significant differences in the overall microbiota composition between infants with CF and healthy infants (p<0.001). Akkermansia and Anaerostipes were significantly more abundant in control infants, whereas Streptococci and E. coli were significantly more abundant in infants with CF, also after correction for several clinical factors (p<0.05). Antibiotic use in infants with CF was associated with a lower alpha diversity, a reduced abundance of Bifidobacterium and Bacteroides, and a higher abundance of Enterococcus. CONCLUSION: Microbial development of the gut is different in infants with CF compared to healthy infants from the first months of life on, and further deviates over time, in part as a result of antibiotic treatment. The resulting dysbiosis may have significant functional consequences for the microbial ecosystem in CF patients.


Subject(s)
Bacteria , Cystic Fibrosis , Dysbiosis , Gastrointestinal Microbiome , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cystic Fibrosis/drug therapy , Cystic Fibrosis/epidemiology , Cystic Fibrosis/microbiology , Cystic Fibrosis/physiopathology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Dysbiosis/diagnosis , Dysbiosis/etiology , Dysbiosis/microbiology , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Humans , Infant , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiopathology , Male , Netherlands/epidemiology , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNA
19.
Pediatr Pulmonol ; 55(9): 2463-2470, 2020 09.
Article in English | MEDLINE | ID: mdl-32592537

ABSTRACT

BACKGROUND: Diagnosis and follow-up of respiratory diseases traditionally rely on pulmonary function tests (PFTs), which are currently performed in hospitals and require trained personnel. Smartphone-connected spirometers, like the Air Next spirometer, have been developed to aid in the home monitoring of patients with pulmonary disease. The aim of this study was to investigate the technical validity and usability of the Air Next spirometer in pediatric patients. METHODS: Device variability was tested with a calibrated syringe. About 90 subjects, aged 6 to 16, were included in a prospective cohort study. Fifty-eight subjects performed conventional spirometry and subsequent Air Next spirometry. The bias and the limits of agreement between the measurements were calculated. Furthermore, subjects used the device for 28 days at home and completed a subject-satisfaction questionnaire at the end of the study period. RESULTS: Interdevice variability was 2.8% and intradevice variability was 0.9%. The average difference between the Air Next and conventional spirometry was 40 mL for forced expiratory volume in 1 second (FEV1) and 3 mL for forced vital capacity (FVC). The limits of agreement were -270 mL and +352 mL for FEV1 and -403 mL and +397 mL for FVC. About 45% of FEV1 measurements and 41% of FVC measurements at home were acceptable and reproducible according to American Thoracic Society/European Respiratory Society criteria. Parents scored difficulty, usefulness, and reliability of the device 1.9, 3.5, and 3.8 out of 5, respectively. CONCLUSION: The Air Next device shows validity for the measurement of FEV1 and FVC in a pediatric patient population.


Subject(s)
Asthma/diagnosis , Cystic Fibrosis/diagnosis , Smartphone , Spirometry/instrumentation , Adolescent , Asthma/physiopathology , Child , Cystic Fibrosis/physiopathology , Equipment Design , Female , Forced Expiratory Volume , Humans , Male , Reproducibility of Results , Vital Capacity
20.
Pediatr Allergy Immunol ; 31(5): 496-505, 2020 07.
Article in English | MEDLINE | ID: mdl-32115766

ABSTRACT

BACKGROUND: There are sparse real-world data on severe asthma exacerbations (SAE) in children. This multinational cohort study assessed the incidence of and risk factors for SAE and the incidence of asthma-related rehospitalization in children with asthma. METHODS: Asthma patients 5-17 years old with ≥1 year of follow-up were identified in six European electronic databases from the Netherlands, Italy, the UK, Denmark and Spain in 2008-2013. Asthma was defined as ≥1 asthma-specific disease code within 3 months of prescriptions/dispensing of asthma medication. Severe asthma was defined as high-dosed inhaled corticosteroids plus a second controller. SAE was defined by systemic corticosteroids, emergency department visit and/or hospitalization all for reason of asthma. Risk factors for SAE were estimated by Poisson regression analyses. RESULTS: The cohort consisted of 212 060 paediatric asthma patients contributing to 678 625 patient-years (PY). SAE rates ranged between 17 and 198/1000 PY and were higher in severe asthma and highest in severe asthma patients with a history of exacerbations. Prior SAE (incidence rate ratio 3-45) and younger age increased the SAE risk in all countries, whereas obesity, atopy and GERD were a risk factor in some but not all countries. Rehospitalization rates were up to 79% within 1 year. CONCLUSIONS: In a real-world setting, SAE rates were highest in children with severe asthma with a history of exacerbations. Many severe asthma patients were rehospitalized within 1 year. Asthma management focusing on prevention of SAE is important to reduce the burden of asthma.


Subject(s)
Anti-Asthmatic Agents , Asthma , Adolescent , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Child , Child, Preschool , Cohort Studies , Disease Progression , Europe/epidemiology , Female , Humans , Incidence , Male , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...